
Application Specific Data Replication for Edge Services �

Lei Gao, Mike Dahlin, Amol Nayate,
Jiandan Zheng

Laboratory for Advanced Systems Research
Department of Computer Sciences
The University of Texas at Austin

lgao, dahlin, nayate, zjiandan
@cs.utexas.edu

Arun Iyengar
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

aruni@watson.ibm.com

Abstract
The emerging edge services architecture promises to improve the
availability and performance of web services by replicating servers
at geographically distributed sites. A key challenge in such systems
is data replication and consistency so that edge server code can ma-
nipulate shared data without incurring the availability and perfor-
mance penalties that would be incurred by accessing a traditional
centralized database. This paper explores using a distributed ob-
ject architecture to build an edge service system for an e-commerce
application, an online bookstore represented by the TPC-W bench-
mark. We take advantage of application specific semantics to de-
sign distributed objects to manage a specific subset of shared in-
formation using simple and effective consistency models. Our ex-
perimental results show that by slightly relaxing consistency within
individual distributed objects, we can build an edge service system
that is highly available and efficient. For example, in one experi-
ment we find that our object-based edge server system provides a
factor of five improvement in response time over a traditional cen-
tralized cluster architecture and a factor of nine improvement over
an edge service system that distributes code but retains a central-
ized database.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems. C.4 [PERFORMANCE OF SYSTEMS]: De-
sign studies, Fault tolerance, Reliability, availability, and service-
ability. D.2 [SOFTWARE ENGINEERING]: Software Archi-
tectures.

General Terms
Design, Measurement, Performance

Keywords
Availability, Data Replication, Distributed Objects, Edge Services,
Performance, Wide Area Networks (WAN).

1. INTRODUCTION
The emerging edge services architecture for providing web ser-

vices processes client requests at a collection of edge servers dis-
tributed across the network and near end users [1, 5, 8, 35, 38]. This

�

This work was supported in part by the Texas Advanced Research Program and an
IBM University Partnership Award. Dahlin was also supported by an Alfred P. Sloan
Research Fellowship.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

approach minimizes communication across the wide area network
during the processing of client requests in order to improve service
availability and latency.

Improving availability and latency is crucial for business-critical
e-commerce servers. Although some server vendors advertise “four-
9’s” (99.99%) or “five-9’s” (99.999%) of availability, when net-
work failures are considered, end-to-end service availability is of-
ten as low as two-9’s (99%), meaning that an average web client
cannot contact an average web server for about 15 minutes a day [15,
28, 44]. Furthermore, despite that Internet web server response
times have been improved, human factors studies suggest that hu-
man productivity improves more than linearly as computer systems
response times fall in the sub-second range [21].

Many systems for business logic (code) distribution and exe-
cution at edge servers have been built [2, 5, 8, 35, 38], but the
core challenge, dynamic data distribution and consistency, still re-
mains. The data on which edge servers operate must be consis-
tently replicated for the edge servers to correctly deliver the ser-
vices. Although web-scale replication is well understood for tradi-
tional caching, where all updates are made at a central server, repli-
cation and consistency for edge servers that can both read and write
data is more challenging. Brewer [7] suggests that there is a fun-
damental CAP dilemma for data replication in large scale systems:
systems cannot simultaneously achieve both high Consistency and
high Availability if are subject to network Partitions. As a result,
distributed code is used for caching and content assembly [1, 8,
35] but seldom used for replication of web services with a rich mix
of reads and writes.

The goal of this project is to build an edge service replication
architecture using application-specific distributed objects [36] for
e-commerce applications. Standard e-commerce implementations
allow business logic (e.g. servlets, Enterprise Java Beans, or CGI
programs) to access the central databases directly. In the case where
business logic is distributed, accesses to the central database be-
come costly remote operations. Our edge service architecture repli-
cates both business logic and data on edge servers. It encapsulates
the shared data and manages the distributed state behind application-
specific distributed object abstractions. As illustrated in Figure 1,
we deploy business logic, distributed objects, a database, and a
messaging layer on a set of distributed servers that are accessed
by clients via standard HTTP front ends. The distributed objects
interpose between business logic and the local database to control
data access. They also communicate with other instances of the
distributed objects through the persistent messaging layer [14, 22,
30] to manage data replication and consistency.

In this paper, we demonstrate that the edge services architec-
ture is feasible for the TPC-W benchmark [34], which represents

449

an online bookstore with functionalities including browsing, shop-
ping, and ordering. To further explore data replication issues, our
study also uses a variation of the TPC-W benchmark, called the dis-
tributed bookstore, that includes additional consistency constraints.

Our experiment suggests that although strong consistency and
high availability are difficult to achieve for a completely general
large-scale system using a generic database interface, the semantics
of the specific shared objects needed by the distributed bookstore
are relatively straightforward to provide. We identify five simple
distributed objects to manage the consistency of different subsets
of the distributed bookstore’s shared data. The catalog object is
used to maintain catalog information in our system. It exploits the
fact that catalog updates take place at one place and are read at
many others. We use the order object to collect finalized orders at
multiple locations and process them at the backend server. It takes
advantage of the fact that many nodes write orders, but only one
needs to read them as well as the fact that the requirement on update
sequencing across nodes is loose. The profile object represents the
user profile information in our system. It takes advantage of low
concurrency of access to each record on multiple nodes, as well
as field-specific reconciliation rules [32]. The inventory and best-
seller-list objects are used for tracking a bookstore’s inventory and
best seller lists. In the case of inventory, the object exploits the fact
that edge servers care about whether the inventory is zero but do
not need to know the actual value. In case of the best seller list, the
object takes advantage of the fact that a few purchases of a non-
popular book do not necessarily put this book on the best seller list
because the purchases of popular books can greatly exceed those of
non-popular ones.

Encapsulating database access behind object specific interfaces
yields many advantages. First, client requests are locally satis-
fied by distributed objects, which asynchronously manage the local
database consistency. Thus, edge servers are able to continue to op-
erate, even in the case when network partitions occur. Furthermore,
because requests are satisfied locally at edge servers, the response
time is better than that of the centralized system because we mini-
mize trips to store or retrieve data at the central database. Second,
each distributed object can make use of object specific strategies
to replicate data and to enforce exactly the consistency semantics
it requires. Third, distributed objects restrict data access to a nar-
rower interface than a general database interface, which allows for
simplifying assumptions in the objects’ consistency protocols.

We construct and evaluate a prototype system based on Apache
web servers, Tomcat Servlet engines, a JORAM implementation of
the Java Message Service, and a DB2 database, and we find that it
has excellent availability, consistency, and performance. Under this
implementation, our edge servers approximate the ideal system, in
which high speed and reliable links connect end users to service
front-ends and connect service front-ends to backend databases.
For instance, our system continues to process requests with the
same throughput and response time before, during, and after a 50-
second network partition that separates edge servers and the back-
end server. And the response time of our system is nearly 5 times
better than that of the traditional centralized system, in which end
users connect to web servers via slow WAN links.

Qualitatively, we find the application-specific consistency rules
easy to build and understand. We speculate that this approach may
be useful for engineering systems for two reasons. First, once
developed, distributed objects encapsulate the complexity of data
replication and provide simple interfaces for engineers to use to
build edge services without worrying about the intricacies of con-
sistency protocols. Second, when experts construct the distributed
objects, the restricted interface makes it easier to build distributed

objects with the ability to handle consistency than to write recon-
ciliation rules [32] for generic database interfaces.

This paper’s main contribution is to demonstrate that object-based
data replication makes it easy to build a distributed e-commerce
web service and thereby dramatically improve both availability and
performance. Although we focus on TPC-W and the more demand-
ing distributed bookstore benchmark in this study, we speculate that
similar techniques might also apply to a broader range of applica-
tions. Some consistency optimizations we exploit are similar to
some proposed in previous work [25, 26, 32, 36, 42], but our em-
phasis is on how to integrate these ideas and effectively apply them
to make an important class of applications work.

In the rest of the paper, we first present the background informa-
tion on the TPC benchmark W. Then, in Section 3, we discuss the
design of our distributed bookstore application with the focus on
the four distributed objects that enable data replication for the edge
services. In Section 4, we conduct experiments with the TPC-W
benchmark workload, primarily targeting system availability, per-
formance, and consistency. We discuss other similar work in Sec-
tion 5 and summarize our work in Section 6.

2. TPC-W BACKGROUND
TPC Benchmark W (TPC-W) is an industry-standard transac-

tional web benchmark that models an online bookstore [34]. It is
intended to apply to any industry that markets and sells products or
services over the Internet. It defines both the workload exercising a
breadth of system components associated with the e-commerce en-
vironment and the logic of the business oriented transactional web
server. The benchmark defines activities including multiple con-
current online browsing sessions, dynamic page generation from
a database, contention of database accesses and updates, the si-
multaneous execution of multiple transaction types, and transac-
tion integrity (ACID properties). These are core demands in many
e-commerce applications, but the weights of these activities may be
different across applications.

The benchmark defines three scenarios (workload mixes): brows-
ing, shopping, and ordering. The browsing scenario consists of a
mix of 95% browsing interactions, such as searches and product de-
tail displays, and 5% ordering interactions. The ordering scenario
consists of 50% shopping interactions and 50% ordering interac-
tions. For scalability measurements, the benchmark also defines
the size of data entries in the backend database, which affects the
performance of some interactions such as search. The defined data
entries include the number of books in the database and the num-
ber of initial registered customers, as well as the number of book
photos of different sizes.

The primary metric of the TPC-W benchmark is WIPS, which
refers to the average number of Web Interactions Per Second com-
pleted. It is used for measuring the system throughput. Another
metric is the Web Interaction Response Time, (WIRT), which is
used for measuring the latency of the system.

3. SYSTEM DESIGN

3.1 Overall architecture
As Figure 1 indicates, our edge services architecture consists of

a backend cluster and a collection of edge servers distributed across
the network. The common components on both edge and backend
servers are business logic, a messaging layer, a database, and the
distributed objects. Edge servers have an additional component,
the HTTP front-end, through which clients access the service.

The edge services model works as follows. Clients use HTTP

450

Figure 1: The edge services architecture diagram.

to access services through edge servers that are located near them.
A number of suitable mechanisms for directing clients to nearby
servers exist [1, 6, 16, 35, 41], and these mechanisms are orthog-
onal to our design. The HTTP front-end passes user requests to
business logic units for processing and forwards replies from the
business logic units (e.g. servlets, cgi, or ASP) to the end users.
The business logic processes client requests on the edge server, and
it stores and retrieves shared data using the interface provided by
distributed objects. Each distributed object stores and retrieves data
in the local database and also communicates with remote instances
of the object in order to maintain the required globally consistent
view of the distributed state. This distributed object architecture is
similar to that proposed in the Globe system [36]. Distributed ob-
jects use JDBC to operate on the local database and the messaging
layer to communicate with instances on other servers.

The messaging layer uses persistent message queues [14, 22, 30]
for reliable message delivery and an event-based model for mes-
sage handling at the receivers. To ensure exactly once reliable de-
livery even in the presence of partitions and machine crashes, the
local messaging layer instance stores messages on the local disk
before attempting to send them. Upon the arrival of each message
at its destination, the messaging layer instance of the destination in-
vokes the message handler to pass this message to the correspond-
ing distributed object instance. The messaging layer provides trans-
actional send/receive for multiple messages.

We choose IBM DB2 for the database in our distributed TPC-W
system. On each edge server, we use the Apache Web Server as the
HTTP front-end and Tomcat servlet engine to host business logic
servlets. We use a third party implementation of Java Message Ser-
vice (JMS), called JORAM [23], for the messaging layer. In some
of our experiments, we find that the relatively untuned JORAM
implementation limits performance. Therefore, as a rough guide to
the performance that a more tuned messaging layer might deliver,
we also implement a quick messaging layer that provides the same
interface as JORAM but without the guaranteed correct behavior
across long network partitions or node failures. We report perfor-
mance results for both systems. We modify the TPC-W database
schema and business logic for the TPC-W online bookstore from
the University of Wisconsin [33] to fit in our object-based edge
service architecture. We add 5 distributed objects on both the back-
end and edge servers to manage the shared information, namely the
catalog, order, profile, inventory, and best-seller-list.

In the rest of the section, we focus our discussion on the design of

the five distributed objects. By targeting consistency requirements
for each individual distributed object, we explain how to design
simple consistency models to solve the CAP dilemma in building a
replication framework for edge services at the object level.

3.2 Design Principles
Design trade-offs for our distributed TPC-W system are guided

by our project goal of providing high availability and good per-
formance for e-commerce edge services as well as by technology
trends. When making trade-offs, we consider the fact that tech-
nology trends reduce the cost of computer resources while making
human time relatively expensive [12]. Therefore, we are willing
to trade hardware resources, such as network bandwidth and disk
space, for better system availability and shorter latency for users as
well as design simplicity and better consistency for system builders.
Our first priorities are availability and latency. They are the most
important goals for edge services because both availability and la-
tency directly impact the service quality experienced by end users.
The second set of priorities are the consistency and simplicity of
the system. Good consistency is a high priority because a key chal-
lenge in any relaxed consistency system is reasoning about sub-
tle corner cases [17], and good consistency makes this reasoning
more straightforward for system designers. We emphasize simplic-
ity throughout our design so we can easily understand and tune
system performance and thereby be more confident of its correct-
ness. Simplicity is also important for making the approach useful
in practice. To quantify the simplicity of our distributed bookstore
system, we compare the size of source code for both centralized
and distributed implementations. The source code of the latest dis-
tributed TPC-W bookstore implementation is only three thousand
lines more than that of the centralized version, excluding the mes-
saging layer implementation. The third priority is optimizing re-
source usage such as network bandwidth, processing power, and
storage. We seek a simple distributed object architecture that im-
proves availability and response time while keeping throughput and
system cost competitive with existing systems.

We have made several design decisions based on these priori-
ties. We focus our attention on moderate scale replication with 2-
20 edge server locations rather than large scale replication to hun-
dreds or thousands of edge servers. Recent work has suggested that
moderate scale replication provides better availability when con-
sistency constraints are considered [43]. This discovery simplifies
the design of distributed objects because the replication is not at a
large scale. We have bypassed a number of potentially attempting
optimization options for each distributed object. Since our main
objective is to show the feasibility and the effectiveness of using
the distributed object architecture for WAN replication, we place
a heavy emphasis on simplicity. Future work may further enhance
the benefits of the architecture by systematically optimizing perfor-
mance.

Our distributed object architecture assumes that edge servers are
trusted. This requirement of trust is another argument for focus-
ing on replication to a few (2-20) edge servers and not thousands
of replicas. This trust model is not only reasonable in the environ-
ment where the service provider owns and manages geographically
distributed service replicas, but also appropriate when a service
provider out-sources replication to a trusted edge service infras-
tructure provider or CDN that ensures physical and logical security
of edge-server resources. We also assume edge servers and the
backend server communicate through secured channels though our
current prototype does not encrypt network traffic.

3.3 Distributed objects

451

Distributed objects may be a simple way to achieve both high
availability and good consistency for some large-scale systems in
the wide area network. We speculate that we can design the dis-
tributed objects using application specific knowledge so that their
interfaces and internal structures are restricted, making it easier to
implement them and to enforce the consistency required of them.
In this section we discuss the design and evaluation of the key dis-
tributed objects in the distributed TPC-W system.

3.3.1 The catalog object
The catalog object is the abstraction of one-to-many updates. It

accepts writes at one place and propagates changes to multiple lo-
cations for subsequent reads. In the distributed TPC-W system, we
use this object to manage catalog information, which contains book
descriptions, book prices, and book photos. Update operations on
catalog data are performed at the backend and propagated to edge
servers.

The interface of the catalog object includes a write operation
that takes a key-value pair, and a read operation that takes a key
and returns the corresponding value. The backend server issues
updates by invoking the write operation, and edge servers retrieve
the updates with the read operation. An update from the backend
server must be seen at some future time by all edge servers, who
retrieve a set of values corresponding to keys. For correctness, the
system must guarantee FIFO consistency [31] (aka PRAM consis-
tency [24]) in which writes by the backend are seen by each edge
server in the order they were issued. Enforcing FIFO consistency
guarantees that, for example, if the backend server creates an object
and then updates a page to refer to that object, the system ensures
that an edge server that reads the new page will also see the new
object. Note that because only one node issues writes, FIFO con-
sistency is equivalent to sequential consistency [26]. But for this
same reason it is much easier to implement than general sequential
consistency. Also note that although FIFO consistency provides
strong guarantees on the order that updates are observed, it does al-
low time delays between when an update occurs and when it is seen
by an edge server. Also, it does not require different edge servers
to operate in lock step. For example, if a web page is updated while
an edge server, se1, is unable to connect to the backend server, an-
other edge server, se2, may still read and make use of this updated
page while se1 continues to use the old version.

In our prototype, the catalog object uses a push-all update strat-
egy to distribute updates. Once the update is made at the backend,
the catalog object immediately hands it to the local messaging layer
for forwarding to all edge servers. Some time later, the update ar-
rives at each edge server. The catalog instances at edge servers
read the update, apply it to the local database, and serve it when
requested by clients. Although this model can potentially use a lot
of bandwidth by sending all updates, we see little need to optimize
the bandwidth consumption for our TPC-W catalog object because
the writes to reads ratio is quite small for the catalog information.
In particular, TPC-W benchmark defines the catalog update opera-
tions as 0.11% of all operations in the workload.

This simple implementation meets our system design priorities.
It provides high availability and excellent latency to our system be-
cause edge servers can always respond immediately to requests us-
ing local data. Furthermore, this implementation provides FIFO/PR-
AM consistency for shared catalog information using a straightfor-
ward approach.

Variations of the catalog object may be useful for other appli-
cations that require one-to-many scatter semantics. For example,
a scatter object could provide a mechanism for propagating edge
service infrastructure information such as program or configura-

tion updates. Similar behavior can also be found in other applica-
tions such as IBM’s geographically-distributed sporting and event
service [9], traditional web caching, edge-server content assembly,
dynamic data caching [10] and personalization. Note that different
workloads may benefit from additional features or optimizations
than we choose for the TPC-W catalog object. In the design of
our prototype, we considered but ultimately did not include these
features that may be of use in other contexts.

1. Atomic multi-object update: Some distributed applications
require a mechanism to atomically update multiple objects.
For example, it may be desirable to atomically update several
component parts that are assembled into a single page [11].
Given the support of transactional updates provided by most
persistent messaging layers, it should be straightforward to
modify the catalog object to support atomic multi-object op-
erations (read/write). Potential costs for this feature include
a slightly more complex interface and/or a reduction in con-
currency of writes and reads due to locking.

2. Data lease: The data served by some time critical applica-
tions, such as stock quotes, are meaningful only within a
fixed interval. If the local data becomes excessively stale
(for instance due to a network partition), some time-critical
applications may prefer to deny service rather than serve bad
data. To extend our catalog object to support such function-
ality, we could add a new parameter in the write operation to
specify a lease period [40] for each update. Of course such a
feature is a reduction in availability because servers may be
forced to deny service rather than serving stale data.

3. Bandwidth constrained update: Applications that have high
write/read ratio with large data objects might not want to use
a push-all strategy for propagating updates because it would
take a lot of bandwidth to send all updates to all edge servers.
Thus, applications with high write/read ratio might need a
more sophisticated algorithm to propagate updates. In an-
other study we examine a self-tuning one-to-many data repli-
cation algorithm that maximizes availability given a band-
width constraint by sending FIFO updates for some objects
but sending FIFO invalidations for others [26].

3.3.2 The order object
The abstraction of the order object is that of many-to-one up-

dates. It gathers writes at various locations and forwards them to
a single place for reading. In our distributed online bookstore ap-
plication, we use the order object to manage the propagation of
completed orders. Locally, edge servers accept user orders, which
need to be processed at the backend server for fulfillment.

The interface for the order object includes an insert operation
that takes an order, an order sequence ID, and an edge server ID,
and a message handler that processes orders when they arrive from
edge servers. Each order is identified by the pair, edge server ID
and order sequence ID, which increments by one whenever a new
order is created on an edge server. Orders are sent by each edge
server in the sequence that they are initially created on that edge
server, and the messaging layer delivers messages in the same se-
quence as they are inserted. Therefore, orders from the same edge
server maintain FIFO consistency at the backend server but dif-
ferent servers’ orders can be arbitrarily interleaved. The handler
interacts with the persistent message layer to ensure that all orders
are guaranteed to be processed exactly once by the backend order
object instance.

452

An incoming message is deleted from the local messaging layer
only if the handler successfully processes the order. If a crash hap-
pens while an order is being processed, the incomplete processing
is rolled back during database recovery. Since the message handler
did not complete, the messaging layer invokes the handler again
during recovery. The handler detects duplicates when it processes
an order. In that case, it does a no-op and returns to the messaging
layer as if the order had been successfully processed.

The order object provides high availability and excellent latency
to our system by decoupling edge servers’ local requests processing
from the persistent store-and-forward processing of orders to the
backend server.

The mechanism of the order object can be extended for other
applications. For example, since it supports FIFO consistency for
updates from the same machine, we can use it to gather the sys-
tem logs in distributed systems to, for example, gather user click
patterns at a web site.

3.3.3 The profile object
The profile object handles reads/writes with low concurrency and

high locality. Each entry contains information about a single user
such as name, password, address, credit card information, and the
user’s last order. Users can only access or modify fields of their
own profile records.

The interface of the profile object includes a simple read opera-
tion and a write operation. The read operation takes the user ID,
and returns the corresponding profile record. The write operation
takes the user ID, the field ID, and a value. The read operation pro-
vides access to all fields of the profile record, and the write opera-
tion updates a specified field of the record. The profile information
has a low write/read ratio of less than 12.86% [34]. We assume
the server selection logic that directs users to specific edge servers
will generally send the same user to the same edge server for rela-
tively long periods of time so that the user usually modifies his/her
profile record on the same edge server. Therefore, the chances for
concurrent access of the same profile record at two edge servers is
generally low. However, sometimes users will be switched from
one edge server to another (e.g. in response to geographic move-
ment of the user, load balancing, or network or server failures).
A simple and correct requirement for the profile object is that any
profile object must be accessible from any edge server.

Given the low concurrency and high locality of access to pro-
file records and relatively low volume of writes, our prototype im-
plementation (1) uses a write-any read-any policy that does not
require locking across servers, (2) propagates updates among all
edge servers with best effort to propagate all changes quickly, and
(3) applies object-specific “reconciliation rules” [27, 32] to resolve
conflicting updates to the same field of the same record on multiple
edge servers. Whenever a profile record is modified, the update is
enqueued in the message layer to be sent to the other edge servers.
If a set of edge servers are disconnected at the time of the update,
the local messaging layer ensures delivery of the update after those
servers recover. If two concurrent write operations update the same
field of a record on different edge servers, the object code resolves
the conflict with per-field reconciliation rules based on the infor-
mation type. For example, the reconciliation rule for the last order
field is to compare the time that the order is placed and the most
recent order wins; the rule for credit card records or shipping ad-
dresses is to merge multiple updates and prompt the user for selec-
tion when the client makes an online purchase.

The design of the profile object ensures availability and mini-
mizes latency by relaxing consistency compared to sequential con-
sistency [7]. Updates can take place on any edge server without

having to lock the targeted record. Access locality and rapid best-
effort propagation of all updates to all locations reduce the number
of conflicts [19], and rare update conflicts are satisfactorily resolved
by simple per-field reconciliation rules.

Our decision to replicate all profile records on all edge servers
maximizes availability, optimizes response time, and emphasizes
simplicity at the cost of increasing storage space and update band-
width in keeping with our design priorities. Since the profile ob-
jects are small and updates to them are infrequent, partial replica-
tion would likely reduce overhead modestly at best and may hurt
performance, availability, or simplicity. However, systems with
large number of replicas could see large benefits to considering
more sophisticated partial replication.

A wide design space exists for providing consistency on read/write
objects in distributed systems [31], and the trade-offs selected for
the profile object may not be appropriate for other read/write records.
In an environment where access patterns and object semantics are
less benign than the profile object, general approaches might pro-
ceed in two dimensions.

1. Strengthening consistency from the underlying FIFO/PRAM
propagation of updates to provide stronger semantics such as
casual consistency (which may require more complex com-
munication mechanisms such as Bayou’s log exchange pro-
tocol [29]) or sequential consistency (which may require lock-
ing). Quorum based solutions such as [13] could also be ex-
plored.

2. The “reconciliation rules” currently hand-coded in the pro-
file object logic might be made more general by, for instance,
providing an interface on a read/write object to specify rec-
onciliation rules as a parameter [32].

3.3.4 The inventory object
To examine consistency constraints beyond that of the standard

TPC-W benchmark, our distributed-bookstore benchmark adds the
constraint of a finite inventory for each item. It requires that if the
inventory of an object is 0, users requesting this object must be no-
tified that delivery may take longer than normal (e.g. the item is not
in stock and is on back-order). We enforce this constraint with an
inventory object. We observe that the actual count of the inventory
is not important for processing order requests as long as stock is
sufficient. The inventory responds either “OK” to process the order
or “warning” for back-orders. It is acceptable to be conservative
and issue warnings when the inventory is unsure whether items re-
main. (The downside is that users may cancel orders when they re-
ceive warnings in the ordering process. But we can minimize these
false positives with careful system design and implementation.)

The inventory information can be interpreted as ID and quantity
pairs. Every pair maps a particular book in the store to the number
of copies of the book. The interface of the inventory object is the
reserve operation, which takes a numeric value and a book ID, and
returns a boolean value. If the returned value is true, it implies
that the reserve operation successfully decrements the number of
copies of the specified book by the given amount. If the inventory is
insufficient to accommodate the request, false is returned. Note that
the use of a transactional database and persistent messaging layer
allows us to restore this escrowed inventory if the transaction fails
to complete due to a failure or user cancellation. A key observation
is that edge servers care little about the actual inventory of each
book, as long as the inventory is sufficient for them to continuously
process order requests.

In our simple prototype system, the total available inventory is
divided among edge servers by giving each object instance a local-

453

Object Object State Replication Updates Propagation
Catalog all records at all servers backend � all edges
Order 1/N at edge; N/N at backend edges � backend
Profile all records at all servers all edges � all edges and backend

Inventory local view at edge; all local views at backend on threshold: an edge � backend � an edge
Best-seller-list approximate view at edge; current view at backend on threshold: backend � all edge

Table 1: Distributed object state replication and propagation.

Count and enforcing the invariant that the sum of all local counts
across all instances equals the global inventory count. Initially, in-
ventory is evenly distributed among all edge servers. Edge servers
process requests with their local inventory without communicating
with the backend or other edge servers, and their local inventory
decreases over time. We implement a simple protocol between
the backend server and edge servers for inventory re-distribution.
By observing the orders received at the backend server (see sec-
tion 3.3.2), the inventory object instance at the backend server keeps
track of the edge server with the most inventory and the edge server
with the least inventory. Whenever the inventory difference be-
tween the two edge servers exceeds a certain threshold, the inven-
tory instance at the backend server requests inventory re-distribution
between these two edge servers. Note that such a re-distribution re-
quest may fail because the backend might have stale information
about donor’s inventory. Such a failure is benign because the back-
end server eventually becomes aware of the donor’s true inventory
and selects a different donor. Also note that our use of persistent
messaging layer generally simplifies the design of the redistribution
by ensuring that inventory is never lost or duplicated in transfer.

The inventory implementation meets our design goals by increas-
ing the overall availability of the system while providing acceptable
consistency guarantees on the data served to clients. It also reduces
the communication between edge servers and the backend because
edge servers do not need to check availability of the central inven-
tory upon every order request. Therefore, we improve the system
response time and make the system more tolerant to network par-
titions. The limitation of our design is occasional “false positives”
when local count is 0 and inventory instance reports false while
counts on other edge servers is not 0. We examine this issue in
Section 4.4.

The inventory object’s performance could potentially be further
optimized by including any of the following enhancements that we
considered but did not adopt in our implementation because we
have not felt the need for the extra complexity. However, these
optimizations may be of use in optimizing this object for other en-
vironments.

1. Fetch on-demand: When the system realizes the local in-
ventory is insufficient to accommodate an incoming request,
it could delay processing the request and send messages to
other edge servers to request more inventory. If it receives a
positive response, the request could then be processed. If no
positive response is returned within a time period, the request
would be reported as back-ordered as it is now.

2. Sophisticated redistribution: For example, when a particular
edge server experiences heavy demand for an item, the sys-
tem might allocate a larger percentage of inventory to that
edge server.

3. Peer-to-peer inventory exchange: The mechanism of the in-
ventory object is similar to the numerical error guarantee
mechanism in TACT [42]. Unlike TACT, our system ad-
justs the local inventory with a centralized coordinator for
simplicity. We could change the inventory object to employ
the peer-to-peer to model in which edge servers “exchange”
inventory directly.

3.3.5 The best-seller-list object
The best-seller-list object maintains lists of best seller books for

each subject. The best seller books are computed for each subject
based on the sales volume in the 3,333 most recent orders. The lists
contains 50 books in each subject with the highest sales volume.

The interface of this object includes a read operation that takes
a string as the subject and returns a list of best seller books under
the subject. The best seller books change over time as different
books are sold. For the best seller lists to be accurate on every
edge server, all sales activities on all edge servers must be taken
into account when computing the lists. However, the lists may not
change on every sale. For example, several additional purchases of
books that are already in the best seller lists often do not change the
lists. In this sense, the system only cares about the sales activities
exceeding some threshold. Furthermore, it is preferable to return
slightly stale best seller lists rather than to stop serving requests.
Some delay in propagating order information is also acceptable.

In our prototype system, we maintain a copy of the best seller
lists on every edge server. The approach that we take to maintaining
the best seller lists is similar to that for maintaining the inventory
among edge servers. By observing the orders received at the back-
end server (see section 3.3.2), the best-seller-list object instance
at the backend server keeps track of the sales volumes of all books.
As soon as the lists change, the instance at the backend server sends
messages through the messaging layer to best-seller-list instances
on all edge servers to update the lists.

This simple implementation meets our design goal. It improves
system response time and increases system availability by mini-
mizing the communication among edge servers and to the back-
end server for computing and updating the lists and detecting the
changes in the lists. It reduces bandwidth consumption and depen-
dencies among edge servers by monitoring all orders at the back-
end server instead of exchanging order information among edge
servers.

3.4 Issues
In the above subsections, we discussed the design of the dis-

tributed objects used in building our distributed TPC-W system.
Distributed objects are designed based on the specific application
semantics such that they provide simple interfaces and implemen-
tations. In addition, objects encapsulate consistency guarantees and
those guarantees are straightforward and easy to reason about for
both developers and users of the objects. We believe the overall sys-
tem consistency is preserved when objects are integrated together
in the system. However, reasoning about consistency of distributed
systems is difficult, and subtle interactions between distributed ob-
jects, each of which maintains its own consistency using specific
strategies, could conceivably result in unexpected behaviors. Pre-
cisely characterizing the interactions among different consistency
models across objects is an important task for future work.

The distributed objects maintain the consistency of each edge
server such that each edge server has a consistent view of the shared
state. However, occasionally the edge server selection algorithm
may switch clients from one edge server to another to balance load
or in response to node failures, network partitions, or client mobil-
ity. Clients could then observe inconsistency. For example, edge

454

FrontEndClient

LAN

DataBase

LAN

FrontEndClient DataBase

Ideal Architecture LAN

FrontEndClient

LAN

DataBase

Distributed Object

Architecture

DataBaseBackEnd

+

Traditional Centralized

Architecture

Simple Edge Service

Architecture

+

DataBase

WAN

WAN

WANLAN

Client FrontEnd
Figure 2: The network configuration of WAN service architectures.

server se1 may have a newer version of the catalog information
than edge server se2. When a client is switched from se1 to se2,
this client may see older catalog information on se2. One solution
to resolve this issue is to use client browser cookies to enforce a
Bayou-like client consistency model [32] to ensure that clients al-
ways communicate with sufficiently updated servers. We will con-
sider this feature in our future work.

Table 1 contains the summary of state replication and update
propagation of each distributed object.

4. SYSTEM EVALUATION
The experiments target the availability, performance, and consis-

tency of the distributed bookstore system in normal operation and
while the system is partitioned due to network failures.

4.1 Environment
To demonstrate our distributed bookstore system, we deploy a

prototype across 4 servers, three of which act as edge servers and
one as the backend server. Each server runs on a Pentium 900MHz
machine with 256MB memory. IBM DB2 databases are installed
on all server machines. On the three edge servers, we use Apache
and Tomcat to host the servlets that implement the server logic.
Machines in our lab are connected via 100Mbit Ethernet connec-
tions. But in order to simulate a WAN environment among servers
during experiments, we direct all the traffic (both in and out) of
server machines to an intermediate router, which simulates WAN
delays and temporary network outages with Nistnet. In the re-
maining discussion, we refer to links via Nistnet with bandwidth
of 10Mbit/s and latency of 50ms as WAN links and we refer to di-
rect 100Mbit/s links between machines as LAN links. We use three
client machines to generate workload. These three machines have
Pentium 900MHz processors, and each of them connects to a sepa-
rate edge server via a LAN link. One instance of the TPC-W client
program is running on each client machine generating a pre-defined
workload against each edge server. TPC-W defines three workload
mixes, each with a different concentration of writes. In our exper-
iments, we focus on the ordering mix, which generates the highest
percentage of writes (50% of browsing and 50% of shopping inter-
actions in this mix).

4.2 Performance
In this section, we evaluate the performance of our distributed

TPC-W system with respect to two criteria: latency and through-
put. As noted in Section 3, our most important performance goal
is to minimize the system latency because latency alters the “hu-
man waiting cost.” At the same time, we want to see if our system
throughput is competitive with a traditional centralized architec-
ture.

To evaluate the system performance, we run the TPC-W on four
architectures as illustrated in Figure 2. We use one front-end ma-

chine and one back-end machine in this experiment to evaluate the
performance of each architecture. The traditional centralized ar-
chitecture has both its front end and central database connected
by LAN links, but end users must access the front end via WAN
links. The simple edge service architecture replicates its front ends
at the edges of the network near end users. The front ends con-
nect to end users via LAN links and connect to the central database
via WAN links. The ideal architecture has end users, front ends,
and the central database all within a LAN environment. This ar-
chitecture is unrealistically optimistic, but it serves as a point of
reference. The distributed object architecture, presented in this pa-
per, replicates both its front ends and databases at the edges of the
network near end users. The front ends (edge servers) connect to
end users via LAN links and connect to the core server and other
front ends (edge servers) through the distributed objects via WAN
links. In addition to the one front-end system, we examine the per-
formance of the distributed architecture with 3 edge servers (front
ends). For the communication layer, we use both JORAM that uses
persistent message queues to send messages and the quick messag-
ing layer that asynchronously sends messages without storing them
on the local disk. Note that the latter configuration is intended to
illustrate the range of performance that different messaging layers
might provide, but because it does not provide reliable messaging
across failures, it would not be appropriate for actual deployment.

By comparing the performance results of the distributed book-
store application across four architectures, we seek to demonstrate
three points. First, at low workloads, the latency when using the
distributed object architecture matches that when using the ideal
system and is significantly better than that of the traditional system
or the simple edge server system. Second, the throughput when
using the distributed object architecture is competitive with the
ideal or the traditional architecture. Third, when the edge server
becomes the bottleneck under heavy workloads, we can increase
system throughput by adding more edge servers. While varying
the request rate, we measure both system throughput and response
time. In all systems we expect to have the best response time when
the request rate is low. Then, as the request rate increases, the re-
sponse time will increase as well, until when the maximum system
throughput is reached and the system becomes saturated, at which
point the response time will increase sharply.

Figure 3 shows the system performance as we vary the workload.
In the graph, the x-axis represents the throughput in WIPS (web in-
teractions per second), and the y-axis represents the response time
of the TPC-W application deployed on four architectures. We ex-
plain the curves from the top to the bottom. The top most curve
represents the response time for the simple edge service architec-
ture. This system experiences the worst minimum response time of
2.42(sec/req) because many client requests to the edge server trig-
ger multiple requests from the edge server to the core server across
the WAN. The WAN delays, which are set to 100ms RTT, dominate
the system response time. In contrast, under the traditional cen-
tralized architecture, every client request goes across WAN links
just once. The overall response time for the traditional centralized
system is indicated by the second curve from the top, and it shows
nearly a factor of two improvement to 1.25(sec/req). Note that once
the system is saturated, increasing the offered load actually reduces
throughput slightly. The curve indicating the response time of the
ideal architecture improves response time by nearly another factor
of five, to 0.26(sec/req). The response time of the distributed object
architecture with one edge server is approximately the same as that
of the ideal architecture, as indicated in the graph.

Our distributed object architecture with one edge server reaches
its maximum throughput of 3.7(WIPS), which is approximately

455

0.1

1

10

100

1000

0 1 2 3 4 5 6 7 8 9

R
es

po
ns

e
T

im
e

(s
)

Throughput (WIPS)

Simple Edge Service Architecture

Traditional Centralized Architecture

Ideal Architecture

Distributed Object Architecture with 1 Edge Server

3 Edge Servers with JORAM Messaging Layer

3 Edge Servers with Quick Messaging Layer

Figure 3: System response time as the workload increases.

-50

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9

Q
ue

ue
 L

en
gt

h
In

cr
ea

se
 R

at
e

(m
es

sa
ge

s/
se

c.
)

Throughput (WIPS)

JORAM Messaging Layer

Quick Messaging Layer

Figure 4: The growth rate of message queue length.

25% less than that of the traditional centralized architecture’s max-
imum throughput of 4.6(WIPS) (or the ideal architecture’s max-
imum throughput of 4.6(WIPS)). This difference is due both to
the extra overhead of persistent messaging and the fact that the
traditional architecture uses different machines for the front end
and database. We believe that production deployment of our edge
server system would likely make use of separate front-end ma-
chine(s) and database machine(s) at each edge server site to in-
crease throughput.

After we add two more edge servers, the throughput of the dis-
tributed object architecture using either messaging layer continues
increasing to 8.1(WIPS), which is roughly 119% performance im-
provement. Our edge service architecture appears to send all up-
dates to the backend server, which does not seem to have potential
for any speedup. However, two facts allow adding more machines
to yield this speedup of our system. First, the read operations,
which constitute more than 50% of the workload, are distributed
among edge servers. Second, technology exists to make backend
database quite scalable. Our architecture should be similarly scal-
able even with a single backend server that sees all updates. We
believe that the distributed architecture approach should be viewed
as a way to increase availability and improve latency while scala-
bility of throughput is improved with cluster technology.

The throughput of our distributed TPC-W bookstore system is
competitive with that of other academic systems [3, 18, 33]. If
we assume that a typical Pentium III machine costs roughly $800,
the price/performance cost of our system is roughly 250 ($/WIPS),
which falls in the range of published standard industry TPC-W per-
formance results, 24.50-277.80($/WIPS) [39]. We are primarily
limited by our machine memory capacity - frequent paging activ-
ity seems to limit our system maximum throughput. Future work

is needed to explore the scalability of our system as it is tuned to
match the throughput of highly tuned commercial systems.

Figure 4 suggests another advantage of the distributed object ar-
chitecture. The system provides stability against workload bursts
in terms of the response time by buffering the updates on its local
disk. In this graph, the x-axis represents the system throughput and
y-axis represents the growth rate of the buffered messages. When
the throughput exceeds 6 web interactions per second (WIPS), the
message insertion rate exceeds the constant message forwarding
rate of JORAM messaging layer and the queuing time of all mes-
sages starts to increase. As shown in the graph, the growth rate of
buffered messages on the messaging layer increases sharply after
the throughput reaches 6 WIPS. Those buffered messages will be
sent as the system load reduces to normal so that no request is re-
jected during the bursty period. Note, however, that the maximum
steady-state throughput of JORAM is roughly 4-5 WIPS and the
burst throughput of JORAM is roughly 8 WIPS. The quick mes-
saging layer does not buffer messages so it can not defer message
processing during bursts of demand load.

4.3 Availability
A key aspect of our design is that each edge server processes

all requests with only local information. As long as a client can
access any edge server, it can access the service even if some of
the servers are down or if network failures prevent communication
among some or all of the servers. In this section, we examine the
performance impact of message buffering and processing during
and after failures with both JORAM Messaging Layer and Quick
Messaging Layer. We use two different workload rates on each of
the messaging layers.

Figure 5 shows the system throughput, average response time,
and message queue lengths when the system uses either JORAM
Messaging Layer or Quick Messaging Layer before, during, and
after a network failure. Each run lasts for 700 seconds, and a net-
work outage occurs roughly 350 seconds after the experiment starts
and lasts for 50 seconds. During the network outage, no server can
communicate with any other server, but the normal communication
among servers resumes once the network is restored. In order to
provide a moderate load that does not cause queues to develop be-
fore the network fails, we apply a workload of 1.2 WIPS to the
system that runs on the top of JORAM, and apply the workload of
6.8 WIPS to the system on the top of the quick messaging layer.

Graph (a) and (b) in Figure 5 indicate the system throughput
throughout the 700-second session. The x-axis represents the time
progression and the y-axis represents the system throughput. In
each graph, the straight horizontal dash line represents the average
throughput of the 700-second session and the solid slightly wiggly
line represents the running average of throughput over 300-second
intervals. The wiggly line stays close to the straight dash line in
both graphs. It implies that the throughput of systems with both
messaging layers is consistent throughout the session, and the net-
work failures during the session have little effect on the system.
Our distributed TPC-W system can operate normally while being
partitioned because the databases are replicated locally through dis-
tributed objects, and they can continuously provide data for server
computation while partitioned by network outage.

Figure 5 (c) and (d) show the average response time for the two
systems, one on the top of JORAM, another on the top of the quick
messaging layer. The x-axis in the graph represents the time pro-
gression in seconds and the y-axis represents the system response
time. The system response time appears unaffected by the network
outage during the session because the graph does not show an in-
crease in response time during the failure interval, between 350 and

456

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

0 Throughput Over Time

N
or

m
al

iz
ed

 W
IP

S

Time (s)
0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

7

8

9
x 10

0 Throughput Over Time

N
or

m
al

iz
ed

 W
IP

S

Time (s)

(a) System throughput (JORAM Messaging Layer) (b) System throughput (Quick Messaging Layer)

0

100

200

300

400

500

600

0 100 200 300 400 500 600 700

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
s)

Time
(c) System response time (JORAM Messaging Layer) (d) System response time (Quick Messaging Layer)

0

20

40

60

80

100

0 100 200 300 400 500 600 700

Q
ue

ue
 L

en
gt

h
(#

 o
f p

ac
ke

ts
)

Time (s)

Workload at 1.2 WIPS

0

20

40

60

80

100

0 100 200 300 400 500 600 700

Q
ue

ue
 L

en
gt

h
(#

 o
f p

ac
ke

ts
)

Time (s)

Workload at 6.8 WIPS

(e) Average queue length (JORAM Messaging Layer) (f) Average queue length (Quick Messaging Layer)
Figure 5: 700-second session with network outage lasting for 50 seconds.

457

400. Because the response times for different interactions vary, two
curves in this graph tend to fluctuate throughout the session.

Figure 5 (e) and (f) show the average queue lengths in the two
messaging layers. The x-axis represents the time progression and
the y-axis represents the queue length in the number of messages
queued. There are few messages queued by the messaging layers
before the failure starts, but the number of queued messages starts
growing after 350 seconds. The curve that represents the queue
length of the quick message layer indicates a sharper increase in
message length than that of JORAM because the workload used on
the quick message layer is about 4 times bigger than the workload
on JORAM. But all messages are quickly cleared out of the queues
after the network partition is fixed. Note that JORAM Messaging
Layer clears out queued messages relatively slower because it has a
fixed message forwarding rate, approximately 4 msg/sec, which is
much less than that of the Quick Messaging Layer. This behavior
is due to the persistent queuing overhead and the vender specific
design of JORAM Messaging Layer.

During the network failure, the information on each edge may
become stale. However, instead of completely stopping sales dur-
ing these failures, the service provider prefers to continue serving
users with stale information, such as stale catalog and stale best
seller lists, accepting orders with stale inventory which may in-
crease back-order rate, and delaying orders to be processed at the
backend server by buffering them on local disks. The trade-offs
seem appropriate and acceptable for this application.

4.4 Consistency
Because the system slightly relaxes consistency for higher avail-

ability and performance, during the normal system operation or net-
work failures users may view stale information. In this section, we
evaluate the consistency of our distributed TPC-W system during
normal operation by examining the staleness of local inventory.

By distributing the bookstore inventory among all edge servers,
the system allows edge servers to accept orders locally. However,
when a heavy workload is unbalanced across servers and the inven-
tory is low, some books may be sold out on a particular edge server
during a short time frame before the inventory re-distribution ar-
rives from other edge servers. In this case, some order requests tar-
geting the sold-out books may pessimistically report that the ship-
ment may be delayed. In this experiment, we examine the back-
order rate under a condition where the inventory is low and work-
load is unbalanced. We expect the back-order rate to approximate
the ideal back-order rate seen by a centralized system as long as
the inventory re-distribution time is less than the inter-arrival time
between requests targeting the same book.

In order to create a purchasing imbalance across edge servers,
we direct all order requests to only one of the three edge servers.
To maintain a low inventory count at each edge server, we choose
three sets of inventory for each run of the experiment: 2 copies per
title with 5 titles, 4 copies per title with 5 titles, and 6 copies per title
with 5 titles. The workload is designed such that each order request
randomly targets one of 5 books, and we run the experiment long
enough so that the average total number of books ordered is 50% of
the inventory on the edge server, which is roughly 16.7% of overall
inventory in the system. By varying the average inter-arrival time
of requests targeting the same book, we can measure the average
back-order rate for different sets of inventory. If we run against
the traditional centralized architecture with given sets of inventory
and workload, there will be no back-order because even under the
most extreme case where all requests target the same book in the
centralized system, the total number of requested copies is less than
the number of copies of any particular book. The ideal back-order

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1 2 3 4 5 6 7 8 9

B
ac

k-
or

de
r

ra
te

Per title inter-request time

2 copies per title

4 copies per title

6 copies per title

Figure 6: The back-order rate.
rate is zero for the defined sets of inventory and workload.

Furthermore, we speculate that if the distributed-object architec-
ture has the inventory re-distribution time (RDT) much less than
the requests inter-arrival time (RIT) per title, the distributed-object
architecture can approximate the ideal back-order rate, i.e.:

���������	�
�������������

Figure 6 shows the percentage of the back-orders due to the in-
ventory shortage as we vary the request inter-arrival time per book
title. In the graph, the x-axis represents the average inter-arrival
time of requests targeting the same book and the y-axis represents
the percentage of rejected requests over all requests. All three
curves approach the x-axis (the ideal back-order rate) as they ex-
tend to the right where the request inter-arrival time is large. The
workload that has the average request inter-arrival time of less than
2 seconds has the back-order rate greater than 1%. It indicates that
our system inventory re-distribution process takes roughly 2 sec-
onds or less to complete, which is expected because edge servers
use asynchronous message exchange across the WAN for comput-
ing and re-distributing inventory.

It is worth noting that the small back-order rate shown in Fig-
ure 6 only represents the system consistency in the extreme cases
where inventory is small and low, 2-6 copies per book with 5 dif-
ferent books, and the workload is unbalanced. Also as noted in
section 3.3.4 several optimizations can be applied to further reduce
inconsistency.

5. RELATED WORK
Our general approach is similar to that of the Globe system [36]

which proposes a uniform framework for distributed computing in
wide area networks based on the concept of distributed shared ob-
jects. A distributed Globe object is built from a set of local objects
in different address spaces, and each local object interacts with lo-
cal objects in other address spaces. Separately, sub-objects within a
local object handle the flow-control within the object, communica-
tion between the object and objects in other address spaces, repli-
cation strategy of the shared state, and semantics of the particular
object. The goal of this design is to let programmers exploit appli-
cation semantics in the design and implementation of individual ob-
jects and allow programmers to make use of pre-constructed repli-
cation modules to easily invoke standard consistency algorithms
with different objects. This distributed objects model seems to pro-
vide a flexible and powerful way to build distributed applications
in the wide area. But to our knowledge, there is little work quan-
titatively evaluating the benefits of this approach in building data-
oriented services, such as e-commerce applications. In our project,
we apply a distributed object approach to build the TPC-W bench-

458

mark online bookstore and quantitatively show that we can achieve
higher system availability and better performance by leveraging the
distributed objects architecture with specific application semantics.
Our specific implementation differs from Globe in that we do not
follow the same uniform internal structure of Globe objects that
separate “semantics object” from “replication object”. The advan-
tage of separating these modules is that a set of standard consis-
tency implementations may be reused in different objects. How-
ever, we found it simpler to integrate semantics and replication
consistency code. Future work is needed to see if our consistency
algorithm can be modulated in a way that allows simple reuse in
different objects. Also our implementation uses transactional per-
sistent messaging for all communication across objects. Our ex-
perience is that this choice generally simplifies the design of the
object by eliminating the need to ensure reliable message delivery
at the object level.

Gribble uses distributed objects as building blocks for provid-
ing cluster services on the Internet [20]. He employs the general
distributed object approach to hide behind objects the implementa-
tion complexity of availability, performance, scalability, and con-
sistency and provide a simple interface to programmers. The work
focuses on a restricted environment (clusters) where partitions are
rare.

Garcia et al. [18] study the TPC-W benchmark, including its ar-
chitecture, operational procedures for carrying out tests, and the
performance metrics it generates. Their experimental results demon-
strate that TPC-W is a useful tool for generating a standard metric
of the transactional capacity of servers working in e-commerce en-
vironments. The PHARM project [33] at the University of Wis-
consin focuses on the micro-architectural characterization of the
TPC-W defined workload such as branch predictability, caching be-
haviors, and multiprocessor data sharing patterns. Amza et al. [3]
characterize the bottleneck of dynamic web site benchmarks, in-
cluding the TPC-W online bookstore and auction site. Their study
focuses on discovering and explaining the bottleneck resources in
each benchmark.

Many studies have addressed the importance of caching dynamic
content to improve system performance and scalability. Challenger
et al. [9] develop an approach for consistently caching dynamic
Web data that became a critical component of the 1998 Olympic
Winter Games Web site. But it concerns only the single writer case.
Arlitt et al. [4] studied the scalability of a large online shopping sys-
tem by performing workload characterization, and they conclude
that linear scalability is not always adequate in case of workload
bursts. They suggest efficient caching and capacity planning tech-
niques to increase the system scalability and performance.

Most commercial databases support data replication with an ea-
ger or lazy consistency model [19]. The eager update model con-
siders updating every replica as part of a single transaction, which
may decrease the system availability and response time when used
in wide area replication. The lazy update model is usually preferred
for WAN replication because updates are asynchronously propa-
gated to other replicas. Although general database systems support
procedures for resolving conflicts, those procedures are normally
defined with database level semantics [27].

Our order, inventory, and best-seller-list objects take advantage
of the fact that updates are commutative and can be slightly re-
ordered. The value of commutativity for simplifying consistency
has also been used in write-anywhere databases [19].

Bayou [29] and TACT [42] have explored the space of relaxed
consistency models. The Bayou replication framework uses mech-
anisms like the anti-entropy protocol to guarantee the eventual con-
sistency of the system, and it uses version vectors to ensure client

consistency. TACT constructs a model for evaluating the trade-offs
between availability and consistency. The system can be tuned to
provide availability that is subject to the specified consistency re-
quirements. Walsh et al. build the TPC-W benchmark on top of
TACT to demonstrate the feasibility of using TACT as a database
middleware for traditional, SQL-based database applications [37].
They evaluate both the performance benefit and consistency costs
of continuous consistency for their TPC-W implementation across
a variety of replication scenarios and consistency bounds. Both
Bayou and TACT provide hooks for application developers to at-
tach specific reconciliation rules to resolve update conflicts [32].
The design of some of our distributed objects make use of these
ideas.

6. CONCLUSIONS
Our TPC-W bookstore is built using a distributed object archi-

tecture to provide high availability and excellent performance. The
throughput and response time of our system are consistent before,
during, and after network partition. By measuring latencies of four
architectures, we show that the response time of our system closely
approximates that of the ideal system, and our system performance
is dramatically improved comparing to the traditional architecture.

Replicating shared data everywhere seems to limit the system
scalability. But the speedup of our system is possible by adding
more hardware resources (machines). Although we propagate up-
dates to all edge servers, the percentage of replicated updates is less
than 50% of overall workload in the system (reads constitute more
than 50% of the TPC-W workload). We do not view the distributed
architecture approach merely as a way to improve the system scal-
ability in terms of throughput, but as a way to increase availability
and improve latency.

Building the replication framework with a distributed object ap-
proach is relatively straightforward. We design the consistency
model for each individual distributed object by using the corre-
sponding application specific semantics. It then becomes easy to
reason about the trade-offs between availability and consistency for
each object. Usually, we can slightly relax the consistency of a dis-
tributed object to achieve high availability and efficiency. In addi-
tion, distributed objects encapsulate the complexity of data replica-
tion and provide simple interfaces for applications to access shared
data. Thus, an attractive deployment strategy may be for experts in
WAN performance and consistency to construct useful distributed
objects that non-expert programmers can use for building web ser-
vices.

Using persistent message queues is crucial in building our sys-
tem, and doing so also simplifies the design of the distributed ob-
jects. The persistent messaging mechanism provides asynchronous,
reliable, and transactional message delivery, which are essential for
e-commerce applications. In addition, it provides simple interfaces
for communication among all distributed objects.

Our distributed objects can be optimized and tuned for use in
other environments. In order to avoid complexity in our evalua-
tion, we keep the design of distributed objects simple while meeting
the performance and consistency demands of our TPC-W system.
However, there are opportunities for optimizations and tuning for
those distributed objects as we have discussed in Section 3. We plan
to further explore the design space and the applicable environment
of those distributed objects in our future work.

As pointed out, we need further study on consistency issues across
distributed objects and across edge servers. In the future, we will
investigate the interactions among consistency models as the mod-
els become more sophisticated in other environment. We will also
study the impact on system consistency as users move from one

459

edge server to another.

7. REFERENCES
[1] Akamai, Inc. Home Page. www.akamai.com.
[2] Inc. Akamai. Turbo-Charging Dynamic Web Sites with

Akamai EdgeSuite. White paper, Akamai, 2002.
[3] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil,

J. Marguerite, K. Rajamani, and W. Zwaenepoel. Bottleneck
Characterization of Dynamic Web Site Benchmarks.
Technical Report TR02-391, Rice University, Feb 2002.

[4] M. Arlitt, D. Krishnamurthy, and J. Rolia. Characterizing the
Scalability of a Large Web-based Shopping System. ACM
Transactions on Internet Technoogy, June 2001.

[5] A. Awadallah and M. Rosenblum. The vMatrix: A Network
of Virtual Machine Monitors for Dynamic Content
Distribution. In 7th International Workshop on Web Content
Caching and Distribution, August 2002.

[6] S. Bhattacharjee, K. Calvert, and E. Zegura. Self-organizing
wide area network caches. Technical Report GIT-CC-97/31,
Georgia Tech, 1997.

[7] E. Brewer. Lessons from giant-scale services. In IEEE
Internet Computing, July/August 2001.

[8] P. Cao, J. Zhang, and K. Beach. Active Cache: Caching
Dynamic Contents on the Web. In Proceedings of
Middleware 98, 1998.

[9] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable and
Highly Available System for Serving Dynamic Data at
Frequently Accessed Web Sites. In In Proceedings of
ACM/IEEE, Supercomputing ’98 (SC98), November 1998.

[10] J. Challenger, P. Dantzig, and A. Iyengar. A Scalable System
for Consistently Caching Dynamic Web Data. In
Proceedings of IEEE Infocom, March 1999.

[11] J. Challenger, A. Iyengar, K. Witting, C. Ferstat, and P. Reed.
A Publishing System for Efficiently Creating Dynamic Web
Content. In Proceedings of IEEE Infocom, March 2000.

[12] B. Chandra. Web workloads influencing disconnected
services access. Master’s thesis, University of Texas at
Austin, 2001.

[13] S. Y. Cheung, M. Ahamad, and M. H. Ammar. Optimizing
Vote and Quorum Assignments for Reading and Writing
Replicated Data. IEEE Transactions on Knowlegde and Data
Engineering, 1(3):387–397, September 1989.

[14] IBM Corporation. MQSeries: An Introduction to Messaging
and Queueing. Technical Report GC33-0805-01, IBM
Corporation, July 1995.
ftp://ftp.software.ibm.com/software/mqseries/pdf/horaa101.pdf.

[15] M. Dahlin, B. Chandra, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. IEEE/ACM Transactions on
Networking, 2003. To appear.

[16] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel
Server Selection Technique for Improving the Response
Time of a Replicated Service. In Proceedings of IEEE
Infocom, March 1998.

[17] M. Frigo. The Weakest Reasonable Memory Model. Master’s
thesis, MIT, 1988.

[18] D. Garcia and J. Garcia. TPC-W E-Commerce Benchmark
Evaluation. IEEE Computer, pages 42–48, February 2003.

[19] J. Gray, P.Helland, P. E. O’Neil, and D. Shasha. Dangers of
Replication and a Solution. In Proceedings of SIGMOD,
pages 173–182, 1996.

[20] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable,
Distributed Data Structures for Internet Service Construction.
In Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation, October 2000.

[21] IBM. The Economic Value of Rapid Response Time, pages
11–82. Number GE20-0752-0. White Plains, N.Y., 1982.

[22] Java Message Service (JMS).
http://java.sun.com/products/jms.

[23] JORAM. http://www.objectweb.org/joram.
[24] R. Lipton and J. Sandberg. PRAM: A Scalable Shared

Memory. Technical Report CS-TR-180-88, Princeton
University, 1988.

[25] L. Mummert, M. Ebling, and M. Satyanarayanan. Exploiting
weak connectivity for mobile file access. In SOSP95,
December 1995.

[26] A. Nayate, M. Dahlin, and A. Iyengar. Data Invalidation and
Prefetching for Transparent Edge-Service Replication.
Technical report, University of Texas at Austin Department
of Computer Sciences, November 2002.

[27] Oracle7 Server Distributed Systems: Replicated Data.
http://www.oracle.com/products/oracle7/server/whitepapers/
replication/html/index, 1994.

[28] V. Paxson. End-to-end Routing Behavior in the Internet. In
Proceedings of the ACM SIGCOMM ’96 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, August 1996.

[29] K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
A. Demers. Flexible Update Propagation for Weakly
Consistent Replication. In Proceedings of the Sixteenth ACM
Symposium on Operating Systems Principles, October 1997.

[30] Charles Sterling. Programming Best Practices with
Microsoft Message Queuing Services (MSMQ).
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnmqqc/html/msmqbest.asp.

[31] A. Tanenbaum and M. van Steen. Distributed Systems:
Principles and Paradigms, chapter Consistency and
Replication. Prentice Hall, 2002.

[32] D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreitzer,
and C. Hauser. Managing Update Conflicts in Bayou, a
Weakly Connected Replicated Storage System. In
Proceedings of the Fifteenth ACMSymposium on Operating
Systems Principles, pages 172–183, December 1995.

[33] The PHARM Project at the University of Wisconsin.
http://www.ece.wisc.edu/ pharm/tpcw/.

[34] Transaction Processing Performance Council. Home Page.
http://www.tpc.org.

[35] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Active
Naming: Flexible Location and Transport of Wide-Area
Resources. In The Second USENIX Symposium on Internet
Technologies and Systems, October 1999.

[36] M. van Steen, P. Homburg, and S. Tanenbaum. Globe: A
Wide-Area Distributed System. Technical report, Vrije
Universiteit, March 1999.

[37] K. Walsh, A. Vahdat, and J. Yang. Enabling Wide-Area
Replication of Database Services with Continuous
Consistency. Unpublished Manuscript.

[38] A. Whitaker, M. Shaw, and S. Gribble. Scale and
Performance in the Denali Isolation Kernel. In OSDI02,
December 2002.

[39] TPC-W performance result in price/performance .
http://www.tpc.org/tpcw/results/tpcw price perf results.asp.

[40] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering
server-driven consistency for large scale dynamic web
services. In Proceedings of the 2001 International World
Wide Web Conference, May 2001.

[41] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson,
and D. Culler. Using Smart Clients to Build Scalable
Services. In Proceedings of the 1997 USENIX Technical
Conference, January 1997.

[42] H. Yu and A. Vahdat. The Costs and Limits of Availability
for Replicated Services. In Proceedings of the Eightteenth
ACM Symposium on Operating Systems Principles, 2001.

[43] H. Yu and A. Vahdat. Minimal Cost Replication for
Availability. In Proceedings of the Twenty-First Symposium
on the Principles of Distributed Computing, 2002.

[44] Y. Zhang, V. Paxson, and S. Shenkar. The Stationarity of
Internet Path Properties: Routing, Loss, and Throughput.
Technical report, AT&T Center for Internet Research at
ICSI, http://www.aciri.org/, May 2000.

460

